
NOTATION 

T, Reynolds frictional stress;  < >, averaging in time; p, density; x, longitudinal coordinate; y, t rans-  
verse coordinate; u', longitudinal fluctuation velocity; v', t ransverse  fluctuation velocity; u, average longitu- 
dinal velocity; L x, p~th length of longitudinal relaxation; ~t, eddy dynamic viscosity; z ,  K, a, empirical 
constants; x ' ,  x",  integration variables in relation (2); subscript 0 re fe r s  to the value of a quantity in the ini- 
tial section; u e, average velocity at the outer edge of a boundary layer; 6 *, displacement thickness; 6**, 
momentum 'thickness; and ~, local 'thickness of a boundary layer.  
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CORRELATION BETWEEN AMPLITUDES OF 

COMPONENTS OF VELOCITY PULSATIONS 

A. A. Kharenko and A. M. Kharenko 

H A R M O N I C  

UDC 532.517.4 

A correlation is empirically established between the amplitudes of harmonic components of 

velocity pulsations of a turbulent flow next to a wall. 

In analyzing histograms of velocity pulsations for turbulent steady-state flow, the flow regime is often 
modeled as a steady, stochastic process. This makes it possible to represent it as a set of elemental har- 
monic components. Here, it is assumed that the harmonic components are not coupled to each other (do not 
correlate), so that, within the framework of this model, it is sufficient to find the dispersion of the compo- 
nents (spectra). The sum of these components, meanwhile, equals the power of the process. 

In studying the mechanism by which energy is 'transferred from one perturbation to another, it is of 

interest to know not only the dispersion of the components, but also the parameters of their interaction. 
Here, we note that the possibility of a connection existing between the components is probabilistic rather than 
rigorous (determined), since energy is divided and transferred ~t random moments of time and the division 

takes place on structures with random dimenslons. 

As concerns correlations between harmonic components, it is necessary to regard the process as un- 
steady, i.e., i~ts characteristics will depend on time, andthe sum of the dispersions of the components (spec- 
tra) will not be equal to the power of the process, since part of this power is spent on the interaction between 
the components. The periods of transience which occur due to the correlation between the components may 
be comparable to the periods of these components, so that they cannot be detected by the time-averaging 

methods of analysis which are widely used. 

Harmonizable processes [i-3], which can be grouped into several classes, may serve as a model of a 
signal representing velocity pulsations in steady flow which will allow for a correlation between the (harmo- 
nic) components. Dragan introduced the class of D-harmonizable processes, the criterion of which is a finite 
total dispersion of the componen%s. This condition is satisfied for velocity histograms. 
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Fig. 1. Dependence of the spec t r a l  densi ty  
of the ampl i tudes  G (m2.sec -a) on t ime  ~- 
(see) (the dashed line is  the boundary  of 
the region beyond which 95% confidence 
in te rva l s  do not cove r  the a r i t hme t i c  
mean);  in te rva l  of the r e c o r d e d  veloci ty  
h i s tog rams :  ~) at the beginning of the r e -  
cording; b) at the end. 

Since ha rmon ic s  a r e  c h a r a c t e r i z e d  by ampli tude,  f requency,  and phase  of  osc i l la t ion ,  m o r e  comple te  
study of the co r re l a t ion  p r o p e r t i e s  of h a r m o n i c s  r equ i r e s  invest igat ion of the co r r e l a t i on  between ampl i tudes  
and p h a s e s  at differer~t f requenc ies ,  as  well  as  t he i r  mutual  cor re la t ion .  

We developed an a lgor i thm and exper imenta l ly  checked the co r re l a t ion  between 'the ampl i tudes  of the 
ha rmonic  components  of  veloci ty  in the ease  of s teady turbulent  flow in a c i r c u l a r  pipe.  The ampl i tudes  A(f i) 
can be evaluuted by the sum 

74 (li)=~i] qi) + ~(t ,) ,  5 = i /Na t ,  i = o, 1, 2, . . . ,  N - -  1. 

N 

The s p e c t r u m  of the function A(fi) i s  equal to G(T k) = G(~ k) + G~ (Tk), k = 0, 1, 2 . . . . .  N - 1, s ince 
M~ (fi) = 0. The p a r a m e t e r  ~'k has  the d imension of t ime .  

F o r  a s teady p r o c e s s  of the "white r noise  type (no cor re l~ t ion  between the ha rmon ic s ) ,  G(T k) = A 0 ~(Tk), 
G~ (Tk) = const.  Thus,  for  "white" noise type p r o c e s s e s ,  nonsa t i s fac t ion  of the re la t ion  

G(~h) = const, k = 1, 2, . . . ,  N - - 1  (1) 

ind ica tes  the cor re lg t ion  of the function ~ (fi), and, thus ,  of 'the ampl i tudes  at differer~t f requencies .  In 'the 
case  of a varying ampli tude spec t rum,  violation of con~t ion  (I) m a y  be due to the G0"k) t e r m .  I t  is  t h e r e f o r e  
e l imina ted  by changing ove r  to a p r o c e s s  with a constant  spec t rum.  This  opera t ion  does not a l t e r  the c o r r e -  
lat ion p r o p e r t i e s  of the function ~(fi), and Eq. (1) will be sa t i s f ied  for  the t r a n s f o r m e d  p r o c e s s  in the case  

of noncor re la t ion  of the ampl i tudes .  

A p r o g r a m  was wri t ten fo r  the "Dnepr-21"  compute r  as  an a lgor i thm to cheek for  corre l~t ion.  The com-  

puting sequence is  as  follows: 

1. The values of the ampl i tudes  a r e  de t e rmined  

, 7t (fi) = R e~ F [x (tt)]lNAt, 

where  F [x(ti) ] i s  the F o u r i e r  t r a n s f o r m ,  found f r o m  a sample  of the signal x(ti) using a rap id  F o u r i e r  t r a n s -  

f o r m  algor i thm.  

2. The ampli tude of the p r o c e s s ,  conver ted  to a p r o c e s s  with a constant  s p e c t r u m ,  is  found: 

1 ~+8 
An(f~)=~l(f') 28+-----T ~ "~(/~) i = ( 8 ~ 5 1 ) '  " ' "  N - - l - - e ,  

h = i - - e  

where  2 ~ + 1 is  a p a r a m e t e r ,  the choice of which depends on the type of s p e c t r u m  charac te r i z ing  the p r o c e s s .  

In the p r e s e n t  case ,  it is  equal to 11. 

3. A sample  of the function AH(f i) is  subjected to spec t ra l  ana lys is .  We ave raged  values  of the pe r iodo -  
g r a m s  ~t t h ree  adjacent  f requenc ies ,  which co r r e sponds  to six deg ree s  of f r eedom.  

If the ampl i tudes  do not co r r e l a t e ,  then we mus t  obtain r andom values with a constant  ma thema t i ca l  ex-  
peet~:tion. The a r i thmet i c  mean  of the computed e s t i m a t e s  can be taken as  an e s t ima te  of th is  constant.  If  
the e s t i m a t e s  actual ly  sa t is fy  the hypothesis  of constant  G0"k), then the  confidence in t e rva l s  [4], cons t ruc ted  
re la t ive  'to the computed values with a confidence level ,  should c o v e r  t he i r  a r i t hme t i c  mean .  If the re l~t ive  
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number of points outside this region is greater than the confidence level, then the hypothesis of noncorrela- 

tion of the amplitudes of 'the harmonics is invalid. 

To detect a correlation among velocity pulsation amplitudes, it is necessary 'to create a turbulent flow 
such that eddies are formed regularly and 'the division process is impeded. Thus, the number of eddies 

formed will not be so great as to hinder detection of their interaction. We therefore chose to study the motion 
of a clay solution in a circular pipe. The turbulence mechanism remains the same in this ease, while division 

is impeded by the action of cohesive forces. 

The generation and development of turbulence in a clay solution in a circular pipe was studied in [5]~ 
where the experimental unit is described. The measurements were made in the region of developed turbulence 
at a flow-rate velocity twice as great as the flow-rate velocity at which the alternation coefficient reached 
unity 'throughout 'the core of a clay flow with a concentration of 7.570. The flow-rate velocity was equal 'to 2.2 
m/sec. The experiment was conducted on a closed-type hydraulic unit with a measurement section 9.8 �9 10-2m 
in diameter. The velocities were measured with a conduction anemometer with a constant external magnetic 
field at a distance of 50 diameters from the inlet. The amplified signal from the primary transducer was re- 
corded on an ~r tape recorder andthe signal from the recorder was analyzed on a "Dnepr-2" computer. 

The size of the data sample N = 512, which corresponds to a realization time of 1.1 sec. 

Figure i shows results of the calculations for the transverse velocity component at the wail for the his- 
togram interval at the beginning (a) and end (b) of 'the record, it is apparent from the figure that the hypothesis 

of constant G(Tk) is not satisfied, since 14 and 12% of 'the points lie beyond the indicated region. It should be 
emphasized that, after 7 = 0.052, 'the poir~ts are distributed around a straight line, and there is no transience 

in this period interval. 

NOTATION 
A 

A(fi), amplitude of elementary harmonic components; f, frequency; N, data sample; ~ t ,  digitization 
time; M, mathematical expectation; G~ 0-k), spectrum of the function ~ (fi); ~ (fi), deviation function; G(Tk), spec- 
t rum of the amplitude spectrum; 6 (~-), Dirac delta function; F[x(ti)], Four ie r  t ransform of the function x(ti); 

, t ime. 
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